An Analytic Green’s Function for a Lined Circular Duct Containing Uniform Mean Flow (corr.)

نویسندگان

  • Sjoerd W. Rienstra
  • Brian J. Tester
چکیده

An analytic Green’s function is derived for a lined circular duct, both hollow and annular, containing uniform mean flow, from first principles by Fourier transformation. The derived result takes the form of a common mode series. All modes are assumed to decay in their respective direction of propagation. A more comprehensive causality analysis suggests the possibility of upstream modes being really downstream instabilities. As their growth rates are usually exceptionally large, this possibility is not considered in the present study. We show that the analytic Green’s function for a lined hollow circular duct, containing uniform mean flow, is essentially identical to that used by Tester e.a. in the Cargill splice scattering model. The Green’s function for the annular duct is new. Comparisons between the numerically obtained modal amplitudes of Alonso e.a. and the present analytic results for a lined, hollow circular duct show good agreement without flow, irrespective of how many modes are included in the matrix inversion for the numerical mode amplitudes. With flow, the mode amplitudes do not agree but as the number of modes included in the matrix inversion is increased the numerically obtained modal amplitudes of Alonso e.a. appear to be converging to the present analytical result. In practical applications our closed form analytic Green’s function will be computationally more efficient, especially at high frequencies of practical interest to aero-engine applications, and the analytic form for the mode amplitudes could permit future modelling advances not possible from the numerical equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimode radiation from an unflanged, semi-infinite circular duct with uniform flow.

Multimode sound radiation from an unflanged, semi-infinite, rigid-walled circular duct with uniform subsonic mean flow everywhere is investigated theoretically. The multimode directivity depends on the amplitude and directivity function of each individual cut-on mode. The amplitude of each mode is expressed as a function of cut-on ratio for a uniform distribution of incoherent monopoles, a unif...

متن کامل

CuO/water Nanofluid Convective Heat Transfer Through Square Duct Under Uniform Heat Flux

Sometimes the need for non-circular ducts arises in many heat transfer applications because of lower pressure drop of non-circular cross section such as square duct compared to circular tube, particularly in compact heat. But square cross section has poor heat transfer performance and it is expected that using a nanofluid as a new heat transfer media may improve the heat transfer performance of...

متن کامل

Size-Dependent Green’s Function for Bending of Circular Micro Plates Under Eccentric Load

In this paper, a Green’s function is developed for bending analysis of micro plates under an asymmetric load. In order to consider the length scale effect, the modified couple stress theory is used. This theory can accurately predict the behavior of micro structures. A thin micro plate is considered and therefore the classical plate theory is utilized. The size dependent governing equilibrium e...

متن کامل

Sound propagation in slowly varying lined flow ducts of arbitrary cross section

Sound transmission through ducts of constant cross section with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion, where the modes are eigenfunctions of the corresponding Laplace eigenvalue problem along a duct cross section. A natural extension for ducts with cross section and wall impedance that are varying slowly (compa...

متن کامل

Modal Scattering at an Impedance Transition in a Lined Flow Duct

An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1,−∞ < x < ∞ with mean flow Mach number M > 0 and a hard wall along x < 0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006